Starting material for breeding spring emmer (Triticum dicoccum shrank.) of groats use

  • L. Vecherska Plant Production Institute named after V. Ya. Yuriev NAAS, 142, Moskovskyi prosp., Kharkiv, Ukraine, 61000
  • V. Liubych Uman National University of Horticulture, 1, Instytutska Str., Uman, Cherkasy region, Ukraine, 20305
  • L. Relina Plant Production Institute named after V. Ya. Yuriev NAAS, 142, Moskovskyi prosp., Kharkiv, Ukraine, 61000
  • O. Golik Plant Production Institute named after V. Ya. Yuriev NAAS, 142, Moskovskyi prosp., Kharkiv, Ukraine, 61000
  • V. Suchkova National Academy of Agrarian Sciences of Ukraine, 9, Mykhayla Omelianovycha-Pavlenka str., Kyiv, Ukraine, 01010
  • R. Bohuslavskyi Plant Production Institute named after V. Ya. Yuriev NAAS, 142, Moskovskyi prosp., Kharkiv, Ukraine, 61000
Keywords: Triticum dicoccum, T. timopheevii, T. durum, groats properties, hull content, protein, gluten, grain hardness

Abstract

Aim. To explore sources of high groats properties among the genetic diversity of emmer and related species. Methods. Biochemical: The protein content was determined by Kjeldahl digestion; the starch content – by infrared spectroscopy. Technological: the vitreousness was determined by cutting 100 caryopses and expressed as percent- ages. The hull content, expressed in percent, was estimated as the ratio of hulled caryopses to the total of fully threshed ones. The gluten content and quality were assessed by manual washing-out. The hardness was determined on a YPD-300 hardness tester (Ltpm China) as the force in newtons required for caryopsis destruction. Emmer groats were obtained on a laboratory peeler UShZ-1. The groats properties were evaluated according to the method described in a utility model patent No. 129205. Statistical: the significance of differences between accessions was assessed using the Mann-Whitney test for small samples with unknown distribution. Two-factor analysis of vari- ance considered 2 factors – genotype and year conditions. Pearson’s test was used in the correlation analysis. The variability of traits was assessed by the coefficient of variation (CV). Results. The yields of emmer and durum wheat accessions and varieties as well as lines derived from emmer-wheat hybrids were measured and analyzed in 2016–2019. The yields of most emmer accessions (except for T. timopheevii) were similar to that of the check em- mer variety Holikovska (286 ± 15 g/m2). The highest contents of protein and gluten were found in T. timopheevii (18.1 ± 0.4 % and 40.5 ± 1.8 %, respectively), Triticum durum Desf. var. falcatomelanopus Jakubz. & Filat. (17.5 ± ± 1.0 % and 40.4 ± 1.4 %), autochthonous variety Polba 3 (16.8 ± 0.1 % and 36.9 ± 1.1 %), and line 10–139 (14.8 ± 0.8 % and 29.0 ± 2.4 %). The gluten quality of most lines, derived from crossing spring emmer with durum wheat, corresponds to quality group I (good), and the gluten deformation index (GDI) is 50–75 units. T. timopheevii and T. durum var. falcatomelanopus were noticeable for vitreousness (99 ± 1 % and 75 ± 5 %, respec- tively). The grain hardness of the accessions under investigation varied from 151 ± 15 N in variety Romanivska to 286 ± ± 3 N in T. timopheevii. Lines 10–79 (255 ± 6 N), 10–65 (220 ± 10 N) and T. durum var. falcatomelanopus (268 ± 6 N) were characterized by high hardness, which exceeded that of durum wheat variety Spadshchyna (152 ± ± 13 N). High outputs of groats were intrinsic to line 10–139 (96.2 ± 0.8 %), line 10–79 (90.6 ± 0.8 %), T. timopheevii (92.0 ± 0.1 %), and durum wheat Spadshchyna (91.4 ± 0.5 %). All the studied accessions showed low variability (<10 %) of grain hardness. Conclusions. It was found that by the set of groats properties (groats output and cook- ing coefficient in combination with good palatability, aroma, consistency, and also easy threshing), breeding lines 10–79 and 10–139, which are recommended to submit to trials as sources of groats qualities, have been distin- guished. T. timopheevii and T. durum var. falcatomelanopus can be used as stand-alone groats crops, but in this case, they need improvement via breeding in terms of agronomic characteristics.
Published
2021-10-10
How to Cite
Vecherska, L., Liubych, V., Relina, L., Golik, O., Suchkova, V., & Bohuslavskyi, R. (2021). Starting material for breeding spring emmer (Triticum dicoccum shrank.) of groats use. Agricultural Science and Practice, 8(2), 62-74. https://doi.org/10.15407/agrisp8.02.049