online ISSN:2312-3389 print ISSN:2312-3370 DOI:10.15407/agrisp


Archive of Agricultural Science and Practice Journal issues

List of all issues / Content of issue 2018-3 / Abstract & References of Article 9
V. V. Schwartau 1 , O. L. Zozulia 2 , L. M. Mykhalska 1 , O. Yu. Sanin 1

1 The Institute of Plant Physiology and Genetics, NAS of Ukraine 31/17, Vasylkivska Str., Kyiv-22, 03022 Ukraine
2 Syngenta LLC 120/4, Kozatska Str., Kyiv-40, 03040 Ukraine


Received September 22, 2018 / Received October 16, 2018 / Accepted November 21, 2018
Infections of cultivated plants, transmitted by fusariosis agents, are among the most harmful factors for humans in grain production. Thus, there is an obvious need for effective control over harmfulness of fusariosis agents in agrophytocenoses. Summarizing scientifi c data on the issues of forming the strategy of decreasing harmfulness of fusariosis agents in agrocenoses. The major factors of decreasing the level of infecting cereal crops with fusarioses are genetic improvement of plants via selection of species and hybrids, resistant to infections, agrotechnical means and chemical control using modern fungicides with a high level of inhibiting the development of the agent during the whole growing season. The main attention should be paid to controlling the presence and prevalence of infections of plants by such species as F. graminearum, F. pseudograminearum, F. sporotrichioides, F. langsethiae, F. poae, F. avenaceum and F. verticillioides, producing deoxynivalenol, nivalenol, T2- and HT2-toxins, moniliformin, and fumonisins, dangerous for vertebrates. Effective control over fusariosis agents in agrophytocenoses may be achieved via the introduction of resistant species and hybrids, restoration of crop rotations, required agrotechnical means and application of effi cient fungicides. Summarizing the works in investigating fundamental and applied problems of fusarioses of cultivated crops is important for the organization of the effective system of mycotoxicological monitoring of cereals in Ukraine.
Key words: fusariosis, Fusarium, mycotoxins, fungicides, agrophytocenoses.

1. Morgun VV, Schwartau VV, Kyriziy DA. Physiological basis of high productivity formation of cereals. Physiology and biochemistry of cultivated plants. 2010;42(5):371-92.
2. Bilay VI. Fusarium: Biology and Systematics. Kiev: Publishing House of the Academy of Sciences of the Ukrainian SSR. 1955:318 p.
3. Bilay VI. Fusarium. Kiev: Naukova Dumka. 1977:443 p.
4. Retman SV, Kislich TM. Fusarium: the dynamics of the last twenty years. Grain: All-Ukrainian magazine of modern agroindustrial. 2011;11:89-92.
5. Retman SV, Mikhailenko SV, Shevchuk OV. Winter Wheat: Protecting Crop from Disease. Quarantine and plant protection. 2008;11:1-4.
6. Retman SV. Phytopathogenic complex of winter wheat in the forest-steppe of Ukraine. Quarantine and plant protection. 2008;4:53.
7. Retman SV, Kislyh TM. Fusariosis of the ear. Analysis of changes in the pathogenic complex of pathogens. Quarantine and plant protection. 2011;2:1-3.
8. Retman SV, Shevchuk OV, Gorbachev NP. Diseases of the leaves and colossus of cereal colic: distribution, development and protection measures. Quarantine and Plant Protection. 2011;4:25-7.
9. McMullen M, Jones R, Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 1997;81(12):1340-8.
10. McMullen M, HalleyS, Schatz B, Meyer S et al. Integrated strategies for Fusarium head blight management in the United States. Cereal Res. Commun. 2008;36(6):563-8.
11. McMullen MP, Bergstrom GC, De Wolf E, Dill-Macky R et al. A unifi ed effort to fi ght an enemy of wheat and barley: Fusarium head blight. Plant Dis. 2012;96(12):1712-28. doi: 10.1094/PDIS-03-12-0291-FE.
12. Lamichhane JR, Venturi V. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front. Plant Sci. 2015;6:385. doi: 10.3389/fpls.2015.00385.
13. Voss-Fels KP, Qian L, Gabur I, Obermeier C, Hickey LT, Werner CR, Gottwald S. Genetic insights into under- ground responses to Fusarium graminearum infection in wheat. Sci. Rep. 2018, 8(1). doi:10.1038/s41598-018- 31544-w.
14. Seaman WL. Epidemiology and control of mycotoxigenic fusaria on cereal grains. Can. J. Plant. Pathol. 1982;4:187-90.
15. Wiese MV. Compendium of wheat diseases. 2nd ed. APS Press, St. Paul M.N.1987:112 p.
16. Parry DW., Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-A review. Plant Pathol. 1995; 44:207-38.
17. Mathre DE. Compendium of barley diseases. 2nd edn. APS Press, St. Paul MN. 1997.
18. White DG. Compendium of Corn Diseases. 3rd ed. St. Paul, Minn.: American Phytopathological Society Press. 1999.
19. Gilbert J, Tekauz A. Review: recent developments in research on Fusarium head blight of wheat in Cana- da. Can. J. Plant Pathol. 2000;22:1-8. 07060660009501155.
20. Gilbert J, Tekauz A. Strategies for management of Fusa- rium head blight (FHB) in cereals. Prairie Soils Crops J. 2011;4:97-104.
21. Sutton JC. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can. J. Plant Pathol. 1982;4:195-209. 07060668209501326. 22. Gilbert J, Haber S. Overview of some recent research developments in Fusarium head blight of wheat. Can. J. Plant Pathol. 2013;35(2):149-74. 661.2013.772921.
23. Khonga EB, Sutton JC. Inoculum production and sur- vival of Gibberella zeae in maize and wheat resi- dues. Can. J. Plant Pathol. 1988;10(3):232-9.
24. Inch S, Gilbert J. Survival of Fusarium graminearum on Fusarium damaged kernels. In: Clear R (ed.) Pro- ceedings of Canadian workshop on Fusarium head blight, Winnipeg, MB. 1999.
25. Obst A, Lepschy-von Gleissenthall J, Beck R. On the etiology of Fusarium head blight of wheat in South Germany - Preceding crops, weather condtions for inoculum production and head infection, proneness of the crop to infection and mycotoxin production. Cereal Res. Commun. 1997;25(3):699-703.
26. Andersen AL. The Development of Gibberella zeae headblight of wheat. Phytopathology. 1948;38:595- 611.
27. Stack RW. Return of an old problem: Fusarium head blight of small grains. APSnet Plant Health Reviews. [Electronic resource]. 2000.
28. Yi C, Kaul H.P, Kübler E, Schwadorf K, Aufhammer W. Head blight (Fusarium graminearum) and deoxynivalenol concentration in winter wheat as affected by pre-crop soil tillage and nitrogen fertilisation. Z. Pfl anzenk. Pfl anzen. 2001;108(3):217-30.
29. Keller MD, Waxman KD, Bergstrom GC, Schmale DG. III. Local distance of wheat spike infection by released clones of Gibberella zeae disseminated from infested corn residue. Plant Dis. 2010;94:1151-5. doi: 10.1094 / PDIS-94-9-1151.
30. Prussin AJ, Szanyi NA, Welling PI, Ross SD, Schmale DG. Estimating the production and release of ascospores from a fi eld-scale source of Fusarium graminearum inoculum. Plant Dis. 2014;98:497-503. PDIS-04-13-0404-RE.
31. Waggoner PE, Green JSA, Smith FB. The aerial dispersal of the pathogens of plant disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1983;302:451-62.
32. Rotem J, Aust HJ. The effect of ultraviolet and solar radiation and temperature on survival of fungal pro-pagules. J. Phytopathol. 1991;133(1):76-84. 0434.1991.tb00139.x.
33. Edwards SG. Infl uence of agricultural practices on Fu- sarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol Lett. 2004;153(1):29-35. doi:10.1016/j.toxlet.2004.04.022.
34. Onuorah PE. Effect of Mineral Nutrition on the Fusa- rium Brown Foot-rot of Wheat. Plant and Soil, 1969; 30(1):99-104.
35. Yoshida M, Nakajima T, Tonooka T. Effect of nitrogen application at anthesis on Fusarium head blight and mycotoxin accumulation in breadmaking wheat in the western part of Japan. J. Gen. Plant Pathol. 2008;74:355. doi:10.1007/s10327-008-0109-1.
36. Lemmens M, Haim K, Lew H, Ruckenbauer P. The Ef- fect of Nitrogen Fertilization on Fusarium Head Blight Development and Deoxynivalenol Contamination in Wheat. J. Phytopathol. 2004;152(1):1-8. j.1439-0434.2003.00791.x.
37. Martin RA, MacLeod JA, Caldwell C. Influences of production inputs on incidence of infection by Fusarium species on cereal seed. Plant Dis.1991;75:784-788.
38. Khoshgoftarmanesh AH, Kabiri S, Shariatmadari H, Sharifnabi B, Schulin R. Zinc nutrition effect on the tolerance of wheat genotypes to Fusarium root-rot disease in a solution culture experiment. Soil Sci. Plant Nutrit. 2010;56(2):234-43. 2009.00441.x.
39. Grewal HS, Graham RD, Rengel Z. Genotypic variation in zinc effi ciency and resistance to crown rot disease (Fusarium graminearum Schw. Group 1) in wheat. Plant Soil. 1996;186(2):219-26.
40. Sparrow DH, Graham RD. Susceptibility of zinc-defi cient wheat plants to colonization by Fusarium graminearum Schw. Group 1. Plant Soil. 1988;112(2):261-6.
41. Gaur RB, Vaidya PK. Reduction of root rot of chickpea by soil application of phosphorus and zinc. Inter. Chic- kpea Newsletter. 1983;9:17-18.
42. Dordas C. Role of nutrients in controlling plant disea- ses in sustainable agriculture. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Scien- ces/INRA. 2008;28(1):33-46.
43. Jo YK, Seo JH, Choi BH, Kim BJ, Shin HH, Hwang BH, Cha HJ. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl Mater Interfaces, 2014; 6(22):20242-53. doi:10.1021/am505784k.
44. Soković MD, Glamočlija J, Ćirić AD. Natural Products from Plants and Fungi as Fungicides. Fungicides - Showcases of Integrated Plant Disease Management from Around the World. 2013;9.
45. Prieto J, Pati-o O, Plazas E, Pabón L, Ávila MC, Guz- mán JD, Delgado WA, Cuca LE.. Natural Products from Plants as Potential Source Agents for Controlling Fusarium. Fungicides - Showcases of Integrated Plant Disease Management from Around the World. 2013;10. doi: 10.5772/52338.
46. Teich AH, Nelson D. Survey of fusarium head blight and possible effects of cultural practices in wheat fi elds in Lambton County in 1983. Can. Plant Dis. Surv. 1984; 64(1):11-3.
47. Holmes SJI. The susceptibility of agricultural grasses to pre-emergence damage caused by Fusarium culmorum and its control by fungicidal seed treatment. Grass and Forage Sci. 1983;38(3):209-214. 1983.tb01641.x.
48. Lager J, Wallenhammer AC. Crop loss from soil-borne pathogens in white clover stands assessed by chemical treatments. Z. Pfl anzenk. Pfl anzen. 2003;110(2):120-8.
49. Jenkinson P, Parry DW. Isolation of Fusarium species from common broad-leaved weeds and their pathogenicity to winter wheat. Mycologic. Res. 1994;98(7):776-80.
50. Fernandez MR, Pearse PG, Holzgang G, Hughes G. Fusarium head blight in common and durum wheat in Saskatchewan in 2000. Can. Plant Dis. Surv. 2001;81: 83-5.
51. Fernandez MR, Pearse PG, Holzgang G, Hughes G. Fusarium head blight in common and durum wheat in Saskatchewan in 2001. Can. Plant Dis. Surv. 2002;82: 36-8.
52. Fernandez MR, Pearse PG, Holzgang G. Fusarium spp. in residues of cereal and noncereal crops grown in rotation in eastern Saskatchewan. Can. Plant Pathol. 2003;25:423.
53. Levesque CA, Rahe J, Eaves DM. Effects of glyphosate on Fusarium spp.: its infl uence on root colonization of weeds, propagule density in the soil, and on crop emergence. Can. J. Microbiol. 1987;33(5):354-60. m87-062.
54. Levesque CA, Rahe JE. Herbicide interactions with fungal root pathogens, with special reference to glyphosate Annu. Rev. Phytopathol. 1992;30:579-602. doi: 10.1146/
55. Levesque CA, Rahe JE, Eaves DM. Fungal colonization of glyphosate treated seedlings using a new root plating technique. Mycol. Res. 1993;97(3):299-306.
56. Sanogo S, Yang XB, Scherm H. Effects of Herbicides on Fusarium solani f. sp. glycines and Development of Sudden Death Syndrome in Glyphosate-Tolerant Soybean. Phytopathology. 2000;90(1):57-66. doi: 10.1094/PHYTO. 2000.90.1.57.
57. Ceballos R, Quiroz A, Palma G. Effects of post-emergen- ce herbicides on in vitro growth of Fusarium oxysporum isolated from red clover root rot. J. Soil Sci. Plant Nutr. 2011;11(2):1-7.
58. Sanyal D, Shrestha A. Direct Effect of Herbicides on Plant Pathogens and Disease Development in Various Cropping Systems. Weed Sci. 2008;56(1):155-60. WS-07-081.1.
59. Smith NR, Dawson VT, Wenzel ME. The effect of certain herbicides on soil microorganisms. Proc. Soil Sci. Soc. Amer. 1945;10:197-201.
60. Carson ML, Arnold WE, Todt PE. Predisposition of soybean seedlings to Fusarium root rot with trifl uralin. Plant Dis. 1991;75:342-7.
61. Kawate MK, Kawate SCA, Ogg G, Kraft JM. Response of Fusarium solani f. sp. pisi and Pythium ultimum to glyphosate. Weed. Sci. 1992;40:497-502.
62. Sanogo S, Yang XB, Sherm H. Effects of Herbicides on Fusarium solani f. sp. glycines and Development of Sud- den Death Syndrome in Glyphosate-Tolerant Soybean. Phytopathology. 2000;90(1):57-66. doi: 10.1094/PHYTO. 2000.90.1.57.
63. Meriles JM, Vargas GS, Haro RJ, March GJ, Guzman CA. Glyphosate and previous crop residue effect on deleterious and benefi cial soil-borne fungi from a peanut-corn-soy- bean rotations. J. Phytopathol. 2006;154:309-16.
64. Teetor-Barsch GH, Roberts DW. Entomogenous Fusarium speci. Mycopathologia. 1983;84(1):3-16.
65. Munkvold GP, Hellmich RL, Rice LG. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis. 1999;83(2):130-8.
66. Munkvold GP. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 2004;109:705-13. doi: 10.1023/A:1026078324268.
67. Schaafsma AW, Tamburic-Ilincic L, Miller JD, Hooker DC. Agronomic considerations for reducing deoxynivalenol in wheat grain. Can. J. Plant Pathol. 2001;23(3):279-85. doi. org/10.1080/07060660109506941.
68. Schaafsma AW, Tamburic-Ilincic L, Hooker DC. Effect of previous crop, tillage, fi eld size, adjacent crop and sampling direction on airborne propagules of Gibberella zeae/Fusarium graminearum, Fusarium head blight se- verity and deoxynivalenol accumulation in winter wheat. Can. J. Plant Pathol. 2005;27(2):217-24. 07060660509507219.
69. Bacon CW, Bennet RM, Hinton DM, Voss KA. Scanning electron microscopy of Fusarium moniliforme within asym- ptomatic corn kernels and kernels associated with equine leukoencephalomalacia. Plant Dis. 1992;76(2):144-8.
70. Bakan B, Giraud-Delville C, Pinson L, Richard-Molard D, Fournier E, Brygoo Y. Identifi cation by PCR of Fu- sarium culmorum strains producing large and small amounts of deoxynivalenol. Appl. Environ. Microbiol. 2002;68(11):5472-9. doi: 10.1128/AEM.68.11.5472-5479. 2002.
71. Madden LV, Bradley CA, Dalla Lana F, Paul PA. Meta-analysis of 19 years of fungicide trials for the control of Fusarium head blight of wheat [Electronic resource].
72. Hershman DE, Milus EA. Analysis of the 2003 uniform wheat fungicide trials across locations and wheat classes. Proc. Natl. Fusarium Head Blight Forum. Michigan State Univ., East Lansing. 2003;76-80 p.
73. Nakajima T. Fungicides application against Fusarium head blight in wheat and barley for ensuring food safety. Fungicides. 2010:139-56.
74. Xu XM, Parry DW, Nicholson P, Thomsett MA, Simpson D, Edwards SG, Cooke BM, Doohan FM, Brennan JM, Moretti A, Tocco G, Mule G, Hornok L, Giczey G, Tatnell J. Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. Eur. J. Plant Pathol. 2005;112(2):143-54. doi:10.1007/s10658-005-2446-7.
75. Müllenborn C, Steiner U, Ludwig M, Oerke EC. Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels. Eur. J. Plant Pathol. 2007;120(2):157-66.
76. D'Mello JPF, Macdonald AMC, Postel D, Dijksma WTP, Dujardin A, Placinta CM. Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur. J. Plant Pathol. 1998;104:741-51.
77. D'Mello JPF, Placinta CM, Macdonald AMC, Fusarium mycotoxins: a review of global implications for animal health, welfare 19 and productivity. Animal Feed Sci. Technol. 1999;80:183-205.
78. Hysing SC, Wiik L. Fusarium seedling blight of wheat and oats: effects of infection level and fungicide seed treatments on agronomic characters. Acta Agriculturae Scandinavica, Section B - Soil and Plant Scie. 2014;64(6):537-46. doi. org/10.1080/09064710.2014.929731.
79. Amini J, Sidovich DF. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with fusarium wilt of tomato. J. Plant Protect. Res. 2010;50(2):172-8.
80. Rodriguez-Brljevich C. Interaction of fungicide seed treatments and the Fusarium-maize (Zea mays L.) pathosystem. Retrospective Theses and Dissertations, 2008.