online ISSN:2312-3389 print ISSN:2312-3370 DOI:10.15407/agrisp


Archive of Agricultural Science and Practice Journal issues

List of all issues / Content of issue 2019-2 / Abstract & References of Article 5
I. A. Pomitun 1, V. І. Rossokha 1, Ye. A. Boyko 1, O. E. Guzevatyi 2, M. V. Shpilka 1, R. O. Kulibaba 1

1 Institute of Animal Science, NAAS 1-A, Tvarynnykiv Str., Kharkiv, 61026, Ukraine

2 National Academy of Agrarian Sciences of Ukraine, 9, Mykhailo Omelyanovich-Pavlenko Str., Kyiv, 01010, Ukraine

E-mail:, ,,,,

Received , 2019 / Received , 2019 / Accepted July 19 , 2019
Aim. To study calpastatin (CAST) and сallipyge (CLPG) genes polymorphism in Prydniprovska meat sheep. Methods. The studies were conducted using PCR-RFLP method. DNA was isolated from 47 animals. The amplicons were treated with restriction endonucleases MspI and FaqI for genes CAST and CLPG, respectively. Results. The study determined the polymorphism of CAST gene fragment. Two alleles – M (336, 286 b.p.) and N (622 b.p.) with the frequency of 0.83 and 0.17, respectively, were detected. The frequency of genotypes was as follows: ММ – 0.77, MN – 0.13 and NN – 0.10. There was a noted tendency towards the increase in live bodyweight of 4-month-old lambs, carriers of N allele (genotypes NN and MN), compared to the index for the lambs of the same age with genotype MM. Locus CLPG was monomorphic, only allele A was determined (278, 117 and 31 b.p.). Allele G with the mutation, manifested in muscle hypertrophy phenotype, was not detected, all the animals under investigation had genotype AA. Conclusions. CAST gene polymorphism was deter- mined in Prydniprovska meat sheep during our work. The tendency towards the increase in live bodyweight of 90-day-old lambs, carriers of allele N, was established which demonstrated promising perspectives of further studies on associations of this gene and meat qualities of Prydniprovska meat sheep. The obtained results on the monomorphic nature of locus CLPG and the absence of mutation, related to muscle hypertrophy phenotype, demonstrated that the mutation of this gene may be built into the genome of domestic breeds of sheep only via cross-breeding with foreign breeds, in which this trait is manifested.
Key words:sheep, gene, meat productivity, calpastatin, callipyge, polymorphism, Prydniprovska meat breed.

1. Wakchaure R, Ganguly S, Praveen PK, Kumar A, Sharma S, Mahajan T. Marker-Assisted Selection (MAS) in Animal Breeding: A Review. J. Drug Metabol. Toxicol. 2015; 6(5):1-4. 1000e127.

2. Zhi-Liang Hu, Park CA, Reecy JM. Developmental progress and current status of the animal QTLdb. Nucl. Acid. Res. 2016;44(1):827-33. nar/gkv1233.

3. Glazko TT, Komarov AV, Borzakovskaja EV. DNAtechnologies to improve meat productivity. Izvestiya TSHA. 2008;1:75-80 (in Russian).

4. Pomitun IA, Boyko YeA, Rossokha VI. Genes, determining productive qualities and resistance to diseases of sheep. Scientifi c-technical bulletin of the Institute of Animal Breeding. 2011;104:173-82 (in Ukrainian).

5. Trukhachev VI, Selionova MI, Krivoruchko AYu, Aibasov AMM. Genetic markers of meat productivity of sheep (Ovis Aries L.). I. Myostatin, Calpain, Calpastatin (Review). Sel’skokhozyaistvennaya Biologiya. 2018;53 (6):1107-19.

6. Abiye Shenkut Abebe, Mengistie Taye. A Review on the Genetic Basis of Growth and Prolifi cacy Traits in Sheep. Int. J. Anim. Res. 2019;4(25):1-8.

7. Goll DE, Thompson VF, Taylor RG, Ouali A. The calpain system and skeletal muscle growth. Can. J. Anim. Sci. 1998;78:503-12.

8. Wendt A, Thompson VF, Goll DE. Interaction of calpastatin with calpain: a review. Biol. Chem. 2004;385(6):465-72.·

9. Bagatoli A, Gasparino E, Soares MA, Amaral RM, Macedo FA, Voltolini DM, Del Vesco AP. Expression of calpastatin and myostatin genes associated with lamb meat quality. Genet. Mol. Res. 2013;12(4):6168-75. doi: 10.4238/2013.December.4.3.

10. Palmer BR, Roberts N, Hickford JG, Bickerstaffe R. Rapid communication: PCR-RFLP for MspI and NcoI in the ovine calpastatin gene. J. Anim. Sci.1998;76(5):1499- 500.

11. Cockett NE, Jackson SP, Shay TL, Nielsen D, Moore SS, Steele MR, Barendse W, Green RD, Georges M. Chromosomal localization of the Callipyge gene in sheep (Ovis aries) using bovine DNA markers. Gene-tics. 1994;91(8):3019-23. 3019.

12. Jackson SP, Green RD, Miller MF. Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: i. inheritance of the condition and production characteristics. J. Anim. Sci. 1997;75(1):14-8. https://doi. org/10.2527/1997.751133x .

13. Jackson SP, Miller MF, Green RD. Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: ii. carcass characteristics and retail yield. J. Anim. Sci. 1997;75(1):125-32. 1997.751125x .

14. Jackson SP, Miller MF, Green RD. Phenotypic characterization of rambouillet sheep expressing the callipyge gene: iii. muscle weights and muscle weight distribution. J. Anim. Sci. 1997;75(1):133-138. https://

15. Koohmaraie M, Shackelford SD, Wheeler TL, Lonergan SM, Doumit ME. A muscle hypertrophy condition in lamb (Callipyge): characterization of effects on muscle growth and meat quality traits. J. Anim. Sci. 1995;73(12):3596- 607.

16. Shackelford SD, Wheeler TL, Koohmaraie M. Effect of the callipyge phenotype and cooking method on tenderness of several major lamb muscles. J. Anim. Sci. 1997; 75(8):2100-5.

17. Cockett NE, Jackson SP, Shay TL, Farnir F, Berghmans S, Snowder GD, Nielsen DM, Georges M. Polar overdominance at the ovine callipyge locus. Science. 1996; 273(5272):236-8. 236.

18. Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, Jirtle RL, Smith TPL. Identifi cation of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res. 2002;12:1496-506.

19. Smit M, Segers K, Carrascosa LG, Shay T, Baraldi F, Gyapay G, Snowder G, Georges M, Cockett N, Charlier C. Mosaicism of Solid Gold supports the causality of a noncoding A-to-G transition in the determinism of the Callipyge phenotype. Genetics. 2003;163(1):453-6.

20. Cockett NE, Bidwell CA, Charlier C, Smit M, Sergers K, Shay TL, Karim L, Snowder GD, Georges M. Muscle enhanced traits in sheep. Progress in Obesity Research. 2003;9:272-4. http:// ua>books>isbn=274…

21. Murphy SK, Nolan CM, Huang Z, Kucera KS, Freking BA, Smith TPL, Leymaster KA, Weidman JR, Jirtle RL. Callipyge mutation affects gene expression in cis: a potential role for chromatin structure. Genome Res. 2006;16(3):340-6. doi: 10.1101/gr.4389306.

22. Tellam RL, Cockett NE, Vuocolo T, Bidwell CA. Genes contributing to genetic variation of muscling in sheep. Frontiers in Genetics. 2012;3(164):1-14. https://doi. org/10.3389/fgene.2012.00164.

23. Gábor M, Trakovická A, Miluchová M. Analysis of polymorphism of CAST gene and CLPG gene in sheep by PCR-RFLP method. Zootehnieşi Biotehnologii. 2009;42(2):P. 470-6.

24. Yilmaz O, Cemal İ, Karaca O, Ata N. Association of calpastatin (CAST) gene polymorphism with weaning weight and ultrasonic measurements of loin eye muscle in Kivircik lambs. Kafkas Univ.Vet. Fak. Derg. 2014;20(5):675-680. doi: 10.9775/kvfd.2014.10816.

25. Gorlov IF, Shirokova NV, Randelin AV, Voronkova VN, Mosolova NI, Zlobina EY, Kolosov YA, Bakoev NF, Leonova MA, Bakoev SY, Kolosov AY, Getmantseva LV. CAST/MspI gene polymorphism and its impact on growth traits of Soviet Merino and Salsk sheep breeds in the South-European part of Russia. Turkish Journal of Veterinary and Animal Sciences. 2016;40:399-405. doi:10.3906/vet-1507-101.

26. Othman OE, Darwish HR, Abou-Eisha A, El-Din AE. Investigation of calpastatin gene polymorphism in Egyptian sheep and goat breeds. Biosciences Biotechnology Research Asia. 2016;13(4):1879-83.

27. Dimitrova I, Bozhilova-Sakova M, Iliev M. Study of some genes associated with meat productivity in Karnobat Merino sheep breed using PCR-RFLP. Journal of Agriculture and Veterinary Science (IOSR-JAVS). 2017;10(8, III):61-5.

28. Pomitun IA, Kosova A, Zolotareva SA, Pan’kiv LP. Methodological approaches to the assessment of sheep meat productivity. Collection of scientifi c works. Zootekhnicheskaya nauka Belarusi. Genetika, razvedenie, biotekhnologiya razmnozheniya i vosproizvodstva. Tekhnologiya kormov i kormleniya, produktivnost’. - Zhodino. 2016;51(1):147-54 (in Russian).

29. Lakyn H.F. Biometry. Moscow, Vysshaya shkola. 1990: 352 p. (in Russian).

30. Khederzadeh S, Iranmanesh M, Motamedi-Mojdehi R. Genetic diversity of myostatin and calpastatin genes in Zandi sheep. Journal of Livestock Science and Technologies. 2016;4(1):45-52. doi: 10.22103/JLST.2016. 1381.

31. Azari AM, Dehnavi E, Yousefi S, Shahmohamadi L. Polymorphism of calpastatin, calpain and myostatin genes in native Dalagh sheep in Iran. M. Slovak J. Anim. Sci. 2012;45(1):1-6.

32. Suleman M, Khan SU, Riaz MN, Yousaf M, Shah A, Ishaq R, Ghafoor A. Calpastatin (CAST) gene polymorphism in Kajli, Lohi and Thalli sheep breeds. Afric. J. of Biotechnol. 2012;11(47):10655-660. doi: 10.5897/ AJB11.2478.

33. Iovenko VM, Pysarenko NB, Skrepets KV. Polymorphism of Cast gene in caracul breed of sheep. Scientifi c bulletin Askaniya-Nova. 2016;(9):58-64 (in Ukrainian).

34. Tohidi R, Elyasi G, Javanmard A, Shoja J, Rezaei R, Pirahary O. Molecular analysis of ovine calpastatin gene in six Iranian sheep breeds using PCR-RFLP. J. Mol. Genet. 2010;2(1):6-9. 2010.6.9.

35. Nassiry MR, Tahmoorespour M, Jabadmaneh A, Soltani M, Far SF. Calpastatin polymorphism and its association with daily gain in Kurdi sheep. Iran. J. Biotchnol. 2006;4(3):188-92.

36. Dagong MIA, Sumantri C, Noor RR, Herman R, Yamin M. Growth characteristics of Indonesian Thin Tail Sheep (TTS) based on calpastatin (CAST) gene genotype variation. Adv. Environ. Biol. 2016;10(11):27-31.

37. Wang H, Wang J, Wang X, Cheng S, Li X, Wang Z, Fan Q, Fu L, Li S, Zhou X. Association analysis of CAST gene polymorphism with meat quality in fi ve sheep breeds. Acta Agriculturae Zhejiangensis. 2016;28(8):1309-1314.

38. Dagong MIA, Herman R, Sumantri C, Noor RR, Yamin M. Carcass and physical meat characteristics of thin tail sheep (TTS) based on calpastatin gene (CAST) (locus intron 5 - exon 6) genotypes variation. J. Ilmu Ternak dan Veteriner. 2012;17(1):13-24.

39. Khan S, Riaz MN, Ghaffar A, Khan MFU. Calpastatin (CAST) gene polymorphism and its association with average daily weight gain in Balkini and Kajli sheep and Beetal goat breeds. Pakistan J. Zool. 2012;44(2):337-82.

40. Jawasreh KI, Jadallah R, Al-Amareen AH, Abdullah AY, Al-Qaisi A, Alrawashdeh IM, Al-Zghoul MBF, Ahamed MKA, Obeidat B. Association between MspI calpastatin gene polymorphisms, growth performance, and meat characteristics of Awassi sheep. Indian J. Anim. Sci. 2017;87(5):635-9.

41. Liu GQ, Dai R, Ren HX, Wang XH, Liu SR, Sun YL, Yang LG. Polymorphism analysis of genes associated with hindquarters muscular development on chromosome 18 in Xinjiang meat sheep. Yi Chuan. 2006;28(7):815-20. PMID: 16825168.

42. Nanekarani S, Goodarzi M, Mahdavi M. Analysis of Polymorphism of Callipyge Gene in Lori Sheep by PCRRFLP Method. APCBEE Procedia. 2014;8:65-9. doi: 10. 1016/j.apcbee.2014.03.002.

43. Nanekarani S, Goodarzi M. Polymorphism of Candidate Genes for Meat Production in Lori Sheep. IERI Procedia. 2014;8:18-23. doi: 10.1016/j.ieri.2014.09.004.

44. Dimitrova I, Bozhilova-Sakova M. PCR-RFLP analysis of callipyge gene (CLPG) in Karakachan sheep breed. Bulgar. J. Agric. Sci. 2016;22:482-4.

45. Alakilli SYM. Analysis of polymorphism of calpastatin and callipyge genes in Saudi sheep breeds using PCR-RFLP technique. Int. J. Pharmac. Sci. Rev. Res. 2015;30(1):340-4.