online ISSN:2312-3389 print ISSN:2312-3370 DOI:10.15407/agrisp

Archive

Archive of Agricultural Science and Practice Journal issues

List of all issues / Content of issue 2019-2 / Abstract & References of Article 4
https://doi.org/10.15407/agrisp6.02.047
GENETIC CHARACTERIZATION OF THE MIRGOROD PIG BREED, OBTAINED BY ANALYSIS OF SINGLE NUCLEOTIDE POLYMORPHISMS OF GENES
P. A. Vashchenko, V. M. Balatsky, K. F. Pocherniaev *, V. M. Voloshchuk, V. H. Tsybenko, A. M. Saenko, Ye. K. Oliynychenko, T. V. Buslyk, H. S. Rudoman

The Institute of Swine Production and Agroindustrial Production, NAAS of Ukraine 1, Shvedska mohyla Str., Poltava, 36013, Ukraine

E-mail: k.f.pochernyaev@gmail.com *

Received , 2019 / Received , 2019 / Accepted July 19 , 2019
Abstract
Aim. To determine genetic characteristics of the Mirgorod pig breed by analysis of 25 SNPs of 22 genes and to conduct the associative analysis of genes MC4R (SNP c.1426 G > A), LEP (SNP g.2845 А ˃ Т), GH (BsuRI- polymorphism), CTSF (SNP g. 22 G > C) with productive traits of animals. Methods. Blood samples of pedigree Mirgorod pigs, bred at SI «Experimental farm named after Decemberists», Poltava region, were used for the studies. DNA genotyping was performed by PCR-RFLP and TaqMan. Results. Specifi c features of the breed were determined in terms of gene allele frequencies, high level of genetic variability (He – 0.326) and allelic diversity (mean number of alleles per locus – 1.96). The KPL2/m allele that causes genetic anomaly of ISTS is absent among investigated Mirgorod pigs, and the recessive RYR1 g.1843T allele, responsible for stress sensitivity of pigs, occurs at a low frequency (0.04). Unlike other breeds, a relatively high frequency of the minor allele g.15A (0.16) of CTSK and polymorphism of the LEP gene (SNP g.3996 T > C) (He – 0.455) was observed. Statistically signifi cant associations of polymorphisms have been established: MC4R (SNP c.1426 G > A) with age of gaining 100 kg, the thickness of backfat and the Eye Muscle Area, GH/BsuRI with the age of gaining 100 kg, and CTSF (SNP g. 22G > C) with Eye Muscle Area. There was a trend of statistically signifi cant differences between groups of pigs with different genotypes of LEP (SNP g.2845 А ˃ Т) and the thickness of the backfat (p = 0.09). Conclusions. It is reasonable to carry out the restoration of the gene pool of the Mirgorod pig breed, taking into account the SNPs of the studied genes and their associations with the productive traits. It is expedient to give preference to pigs with SNP genotypes с.1426 MC4R GA, MC4R AA, g. 22 CTSF CC, g.2845 LEP TT for breed reproduction.
Key words:Mirgorod pig breed, genetic characteristics, QTL, SNP.
References

1. Voitenko S, Petrenko S, Piskovyi M. Local breeds of pigs: conservation and reproduction, Tvarynnytstvo Ukrainy, 2007;(2):70-2.

2. Krylova L, Shulha Y, Lutsenko V, Zhyrkova R, Dudka O, Yavyshchenko V, Novikov V. Selection pearls of the steppe of Ukraine, Propozytsiia, 2004;(7):83. https://propozitsiya.com/ua/selekciyni-perlini-stepuukrayini

3. Shulga Y, Dudka O, Maslyuk A, Yvin A. Genotypes of pigs of Ascanian breeding: past and today, Tvarynnytstvo Ukrainy, 2012;8(38):76-9. https://elibrary.ru/item.asp?id= 21111894

4. Ostapchuk PP. Pig breeds and their using, Kyiv: Urozhai, 1980:189 p. https://almazzon.com/p591160344- postapchuk-porodi-svinej.html

5. Voitenko SL. Genesis of the Mirgorod breed of pigs, Visnyk Poltavskoi Derzhavnoi Ahrarnoi Akademii, 2012;2:94-9. doi: 10.31210/visnyk2012.02.19

6. Birta HO, Burhu Yu H. Physico-chemical indices of the longest muscle of the back of pigs of various combinations, Sci. Bulletin of the Lviv National University of Veterinary Medicine and Biotechnologies, 2008;10(3): 13-6.

7. Shcherban T, Vashchenko P. Fattening, slaughtering and meat-lard qualities of Mirgorodska pigs breed and its crosses, Ukrainian Black Sea region agrarian science, 2015;2(2):112-9.

8. Shcherban T, Vovk V. Qualitative indexes of meat and fat of pigs received by attracting the genotype of Mirgorod breed, Tvarynnytstvo Ukrainy, 2014;(8-9):37-40. https:// tvarynnyctvoua.at.ua/publ/8_2014/1-1-0-78

9. Voitenko SL, Vyshnevskyi LV. Inbreeding in the Mirgorodian pigs, Animal Breeding and Genetics, 2017;54:208-

15. doi.org/10.31073/abg.54.27

10. Kramarenko SS, Lugovoy SI, Kharzinova VR, Lykhach VY, Kramarenko AS, Lykhach AV. Genetic diversity of Ukrainian local pig breeds based on microsatellite markers. Regulatory Mechanisms in Biosystems, 2018; 9(2):177-82. doi: 10.15421/021826.

11. World Organization for Animal Health, Final Report 2017, 85th General Session, Paris, 21-6 May 2017. http://www.oie.int/fi leadmin/Home/eng/About_us/docs/ pdf/Session/2017/A_FR_2017_public.pdf

12. Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a Medium for Extraction of DNA for PCR-Based Typing from Forensic Material, Biotechniques, 1991;10(4):506-9. PMID: 1867860.

13. Short TH, Rothschild MF, Southwood OI, McLaren DG, De Vries A, van der Steen H, Eckardt GR,Tuggle CK, Helm J, Vaske DA, Mileham AJ, Plastow GS. Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines, J. Anim. Sci, 1997;75(12):3138-42. doi: 10.2527/1997. 75123138x.

14. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, MacLennan DH. Identifi cation of a mutation in porcine ryanodine receptor associated with malignant hyperthermia, Science, 1991;253(5018):448-51. doi: 10.1126/science.1862346.

15. Kmiec M, Terman A. Association between the prolactin receptor gene polymorphism and reproductive traits of boars, J. Appl. Genet., 2006;47(2):139-41. doi: 10.1007/ bf03194613.

16. Vize PD, Wells JRE. Isolation and characterization of the porcine growth hormone gene. Gene. 1987;55:339-44. doi: 10.1016/0378-1119(87)90294-0.

17. Vykoukalova Z, Knoll A, Dvorak J, Cepica S. New SNPs in the IGF2 gene and association between this gene and backfat thickness and lean meat content in Large White pigs. J. Anim. Breed Genet. 2006;123(3):204-7. doi: 10.1111/j. 1439-0388.2006.00580.x.

18. Baskin LC, Pomp D. Restriction fragment length polymorphism in amplifi cation products of the porcine growth hormone-releasing hormone gene. J Anim. Sci. 1997;75(8):2285. doi: 10.2527/1997.7582285x.

19. Russo V, Fontanesi L, Scotti E, Beretti F, Davoli R, Nanni Costa L, Virgili R, Buttazzoni L. Single nucleotide polymorphisms in several porcine cathepsin genes are associated with growth, carcass, and production traits in Italian Large White pigs, J. Anim. Sci., 2008;86(12):3300-14. doi: 10.2527/jas.2008-0920.

20. Fontanesi L, Speroni C, Buttazzoni L, Scotti E, Dall’Olio S, Davoli R, Russo V. Association between polymorphisms in cathepsin and cystatin genes with meat production and carcass traits in Italian Duroc pigs: confi rmation of the effects of a cathepsin L (CTSL) gene marker, Mol. Biol. Rep., 2012;39(1):109-15. doi: 10.1007/s11033-011-0715-4.

21. Russo V, Fontanesi L, Davoli R, Galli S. Linkage mapping of the porcine cathepsin F (CTSF) gene close to the QTL regions for meat and fat deposition traits on pig chromosome 2, Anim. Genet., 2004;35(2):155-7. doi: 10.1111/j.1365-2052.2004.01105.x

22. Kim KS, Lee JJ, Shin HY., Choi BH, Lee CK, Kim JJ, Cho BW, Kim TH. Association of melanocortin 4 receptor (MC4R) and high mobility group AT-hook 1 (HMGA1) polymorphisms with pig growth and fat deposition traits, Anim. Genet., 2006;37(4):419-21. doi: 10.1111/j.1365- 2052.2006.01482.x.

23. Kennes YM, Murphy BD, Pothier F, Palin MF. Characterization of swine leptin (LEP) polymorphisms and their association with production traits, Anim. Genet. 2001;32(4):215-18. doi: 10.1046/j.1365-2052. 2001.00768.x.

24. De Oliveira Peixoto J, Facioni Guimarães SE, Sávio Lopes P, Menck Soares MA, Vieira Pires A, Gualberto Barbosa MV, De Almeida Torres R, De Almeida e Silva M. Associations of leptin gene polymorphisms with production traits in pigs, J. Anim. Breed. Genet., 2006;123(6):378-83. doi: 10.1111/j.1439-0388.2006. 00611.x.

25. Li X, Kim SW, Choi JS, Lee YM, Lee CK, Choi BH, Kim TH, Choi YI, Kim JJ, Kim KS. Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content, Mol. Biol. Rep., 2010;37(8):3931-9. doi: 10.1007/ s11033-010-0050-1.

26. Syrovnev GI. The genetic polymorphism of FUT1 and MUC4 loci in local population of Ukrainian meat breed pigs. Tsitol Genet. 2014 Sep-Oct;48(5):54-9 MID:25318177.

27. Ruan GR, Xing YY, Fan Y, Qiao RM, He XF, Yang B, Ding NS, Ren JF, Huang LS, Xiao SJ. Genetic variation at RYR1, IGF2, FUT1, MUC13, and KPL2 mutations affecting production traits in Chinese commercial pig breeds. Czech. J. Anim. Sci., 2013;58(2):65-70. doi: 10.17221/6616-CJAS.

28. Sironen A, Vilkki J, Bendixen C, Thomsen B. Infertile Finnish Yorkshire boars carry a full-length LINE- 1 retrotransposon within the KLP2 gene, Mol. Gen. Genom. 007;278(4):385-91. doi: 10.1007/s00438-007- 0256-7.

29. Manyatys T, Frych EE, Sembruk Dzh. Methods of genetic engineering. Molecular cloning. Moscow: Myr, 1984:479 p.

30. Balatsky V, Bankovska I, Pena RN, Saienko A, Buslyk T, Korinnyi S, Doran O. Polymorphisms of the porcine cathepsins, growth hormone-releasing hormone and leptin receptor genes and their association with meat quality traits in Ukrainian Large White breed. Mol. Biol. Rep., 2016;43(6):517-26. doi: 10.1007/s11033-016-3977-z.

31.Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Not., 2006;6(1):288-95. doi:10.1111/ j.1471-6.2005.01155.x.

32. Sarantseva NK, Balatsky VM, Nor VYu, Olyinichenko YeK. Genetics and population practicability of using SNP (c. 232T>A) of LEPR gene as a marker for further selection for Large White and Myrgorod pig breeds, Anim. Breed. Genet., 2016;52:176-80. doi:10.31073/ abg.52.23.

33. Nor VYu, Metlytska OI, Bilai DV. Molecular genetic aspects of prediction of productivity of pigs of different breeds of Ukraine, Anim. Breed. Genet., 2015;50:144-55. http://nbuv.gov.ua/UJRN/rgt_2015_50_23

34. Rischkowsky B, Pilling D. The state of the world’s animal genetic resources for food and agriculture. FAO, 2007, Rome.

35. Rothschild MF, Jacobson C, Vaske DA, Tuggle CK, Wang L, Short TH, Eckardt G, Sasaki S, Vincent A, McLaren D, Southwood O, van der Steen H, Mileham A, Plastow G. The estrogen receptor locus is associated with a major gene infl uencing litter size in pigs, Proc. Natl. Acad. Sci. USA, 1996;93(1):201-5. doi: 10.1073/pnas.93.1.201.

36. Rothschild MF, Ruvinsky A. The Genetics of the Pig [second edition], Wallingford. Oxfordshire UK: CAB International, 2010:507 p.

37. Domashova LO. Association of reproductive qualities of Large White breed sows with their genotype for estrogen receptor gene (ESR), Zbirnyk Naukovykh Prats VNAU Suchasni Problemy Selektsii Rozvedennia Ta Hihiieny Tvaryn, 2013;2(72):84-9. http://repository.vsau.org/ card.php?lang=en&id=6825

38. Terman, A. Effect of the polymorphism of prolactin receptor (PRLR) and leptin (LEP) genes on litter size in Polish pigs. J. Anim. Breed. Genet. 2005;122(6):400-4. doi: 10.1111/j.1439-0388.2005.00547.x.

39. Zhao Y, Li N, Xiao L, Cao G, Chen Y, Zhang S, Chen Y, Wu C, Zhang J, Sun S, Xu X. FSHB subunit gene is associated with major gene controlling litter size in commercial pig breeds, Sci. China C, Life Sci. 1998;41(6):664-8. doi: 10.1007/BF02882910.

40. Nor VYu, Metlytska OI, Bilai DV. Molecular genetic aspects of prediction of productivity of pigs of different breeds of Ukraine, Anim. Breed. Genet., 2015;50:144-55. http://nbuv.gov.ua/UJRN/rgt_2015_50_23.

41. Knoll A, Stratil A, Cepica S, Dvorak J. Length polymorphism in an intron of the porcine osteopontin (SPP1) gene is caused by the presence or absence of a SINE (PRE-1) element, Anim. Genet., 1999;30(6):462-78. doi:10.1046/j.1365-2052.1999.00498-5.x.

42. Getmantseva L, Kolosov A, Leonova M, Bakoev S, Klimenko A, Vasilenko V, Radyuk A. Polymorphisms in Several Porcine Genes are Associated with Growth Traits, American Journal of Animal and Veterinary Sciences, 2016;11(4):136-41. doi: 10.3844/ajavsp.2016.136.141.

43. Fontanesi L, Scotty E, Buttazzoni L, Dall’Olio S, Davoli R, Russo V. A single nucleotide polymorphism in the porcine Cathepsin K (CTSK) gene is associated with back fat thickness and production traits in Italian Duroc pigs., Mol. Biol. Rep., 2010;37(1):491-5. doi: 10.1007/ s11033-009-9678-0.

44. Dvořáková V, Stupka R, Šprysl M, Čítek J, Okrouhlá M, Kluzáková E, Brzobohatý L. The effect of missense mutation G.143C˃T in the CTSL gene on production traits without the effect on quality of pork meat, Res. Pig Breed, 2011;5(1):18-21. http://www.respigbreed. cz/2011/1/5.pdf

45. Fontanesi L, Speroni C, Buttazzoni L, Scotti E, Nanni Costa L, Davoli R, Russo V. Association between cathepsin L (CTSL) and cathepsin S (CTSS) polymorphisms and meat production and carcass traits in Italian Large White pigs. Meat Sci. 2010;85(2):331-8. doi: 10.1016/j. meatsci.2010.01.023.

46. Piórkowska KL, Ropka-Molik K, Eckert R, Tyra M, Żukowski K. The association between polymorphisms of three cathepsins and economically important traits in pigs raised in Poland. Livestock Sci. 2012;150(1-3):316-23. doi:10.1016/j.livsci.2012.09.022.

47. DoranO, Korinnyi SN, Dykan OS, Buslyk TV, Pochernyaev KF, Balatsky V, Pena RN. Sequence variation in the cathepsin B (CTSB), L (CTSL), S (CTSS) and K (CTSK) genes in Ukrainian pig breeds, Global J. Anim. Breed. Genet., 2015;3(3):117-24. http://hdl.handle.net/ 10459.1/63472.

48. Galve A, Burgos C, Silio L, Varona L, Rodriguez C, Ovilo C, Lopez Buesa P. The effects of leptin receptor (LEPR) and melanocortin-4 receptor (MC4R) polymorphisms on fat content, fat distribution and fat composition in a Duroc × Landrace/Large White cross, Livestock Sci., 2012:145(1-3):145-52. doi:10.1016/j. livsci.2012.01.010.

49. Sook-Ha Fan, Yee-How Say Leptin and leptin receptor gene polymorphisms and their association with plasma leptin levels and obesity in a multi-ethnic Malaysian suburban population, J. Physiol. pol., 2014; 33(1):15. doi: 10.1186/1880-6805-33-15.

50. Kim KS, Larsen N, Short T, Plastow G, Rothschild MF. A missense variant of the porcine melanocortin 4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammalian Genome. 2000;11(2):131-5. doi: 10.1007/s003350010025.

51. Franco MM, Antunes RC, Silva HD, Goulart LR. Association of PIT1, GH and GHRH polymorphisms with performance and carcass traits in Landrace pigs, J. Appl. Genet., 2005;46(2):195-200. PMID:15876687

52. Konoval OM, Kostenko SO, Spyrydonov VH, Melnychuk SD, Hryhoriuk IP. The MC4R gene is a genetic marker for live growth in pigs, Naukovy Bulletin of Uzhhorod University, , Vol. 22. pp. 110-113. https://dspace.uzhnu. edu.ua/jspui/handle/lib/15547?locale=uk

53. Vykoukalova Z, Knoll A, Cepica S. Porcine perilipin (PLIN) gene: Structure, polymorphism and association study in Large White pigs, Czech J. Anim. Sci. 2009; 4(8):359-64. doi: 10.17221/1661-CJAS.

54. Wimmers K, Lin C, Tholen E, Jennen D, Schellander K, Ponsuksili S. Polymorphisms in candidate genes as markers for sperm quality and boar fertility, Anim. Genet. 2005;36(2):152-5. doi: 10.1111/j.1365-2.2005.01267.x.

55. Sironen A, Uimari P, Iso-Touru T, Vilkki J. L1 insertion within SPEF2 gene is associated with increased litter size in the Finnish Yorkshire population. J. Anim. Breed. Genet., 2012;129(2):92-7. doi: 10.1111/j.1439- 0388.2011.00977.x.

56. Rui Chen, Shuai Yu, Fa Ren, Xiao Yan Lv, Chuan Ying Pan Detection of one large insertion/deletion (indel) and two novel SNPs within the SPEF2 gene and their associations with male piglet reproduction traits, Arch. Anim. Breed. 2016;59(2):275-83. doi: 10.5194/aab-59- 275-2016.

57. Jorgensen C. Patent. US 2006/0275763 A1 United States, Porcine polymorphisms and methods for detecting them. Pub. Date 07.12.2006.

58. Kaspirovich DA, Lebed TL, Doylidov VA. The infl uence of the paternal genotype on the MUC4 gene locus on the safety of young pigs, Bulletin of Polesye State University. Series of Natural Sciences, 2014, no 2, pp. 3-8.

59. Hao LL, Yu H, Zhang Y, Sun SC, Liu SC, Zeng YZ, Ai YX, Jiang HZ. Single nucleotide polymorphism analysis of exons 3 and 4 of IGF-1 gene in pigs, Genet. Mol. Res., 2011;10(3);1689-95. doi:10.4238/vol10-3gmr1328.

60. Voitenko S, Vishnevsky L. Control of genetic situation in Mirgorod breed pigs, Scientifi c essay Askania-Nova, 2012;5:195-200. http://nbuv.gov.ua/UJRN/nvan_ 2012_5%282%29__29.

61. Metlytska OI, Nor VYu. Population-genetic study as a justifi cation of ways to preserve the gene pool of pigs of Mirgorod breed. Anim. Breed. Genet. 2013;47:61-73. http://digest.iabg.org.ua/ge netics/item/14-47-007.

62. Voitenko SL, Vyshnevskyi LV. Inbreeding in the Mirgorod breed of pigs, Animal Breeding and Genetics, 2017, vol. 54, pp. 208-215. http://dspace.pdaa.edu.ua:8080/ handle/123456789/1963.

63. Kiselyova TY, Podoba BY, Zabludovskiy YY, Terletskiy VP, Vorobyev NI, Kantanen J. The analysis of 30 microsatellite markers in loc al cattle populations, Agricultural biology. 2010;(6):20-5. http://www.agrobiology. ru/6-2010kiseleve-eng.html.